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Abstract

In this paper we put forward a framework that integrates features of reactive
planning models with modern control-theory-based approaches to motion control
of robots. We introduce a motion description language, MDLe, that provides a
formal basis for robot programming using behaviors, and at the same time permits
incorporation of kinematic and dynamic models of robots given in the form of dif-
ferential equations. In particular, behaviors for robots are formalized in terms of
kinetic state machines, a motion description language, and the interaction of the
kinetic state machine with real-time information from (limited range) sensors. This
formalization allows us to create a mathematical basis for the study of such sys-
tems, including techniques for integrating sets of behaviors. In addition we suggest
optimality criteria for comparing both atomic and compound behaviors in various
environments. We demonstrate the use of MDLe in the area of motion planning for
nonholonomic robots. Such models impose limitations on stabilizability via smooth
feedback; piecing together open loop and closed loop trajectories becomes essential
in these circumstances, and MDLe enables one to describe such piecing together
in a systematic manner. A reactive planner using the formalism of the paper is
described. We demonstrate obstacle avoidance with limited range sensors as a test
of this planner.

This research was supported in parts by grants from the National Science Foundation’s Engineer-
ing Research Centers Program: NSFD CDR 8803012 and by the Army Research Office under Smart
Structures URI Contract No. DAALO03-92-G0121, ONR (N00014-J-91-1451), ARPA (N00014-94-1090,
DAST-95-C003, F30602-93-C-0039), ARL (DAAH(049610297) and the NSF Grant NSF EEC 94-02384).



1 Introduction

The field of robot control is somewhat split between two communities each producing
impressive results. On the control side, mathematical approaches have been extended to
design control laws for more complex entities in more realistic domains. On the reactive
planning side, physical robots have been designed that can perform more complex tasks
in shorter amounts of time. Unfortunately, these separate strands have not been coming
together with a synthesis of the best ideas of both. In this paper we provide an approach
that is aimed at helping to bridge this gulf, formalizing behavioral robotics using modern
control-theory-based approaches to robot planning. We demonstrate our work in the
area of motion control, a critical aspect of robotics.

At its highest level of abstraction motion control can be viewed as the generation of
symbolic inputs to a control system based on sensory information about its current
state, desired state and the state of the environment it is operating in. In the case of
mobile robots, these symbolic inputs are often commands such as “move”, “turn”, “stop”

etc. which, along with sensor information, can then be used to generate more complex
behaviors such as “avoid obstacle”, “trace wall” etc.

While in many cases these symbolic inputs can be mapped into appropriate control laws
that can be accepted by the system, often with more complex systems this requires a
deep and a complete understanding of the underlying dynamics. In fact, in many cases
the nonlinear dynamics, kinematic (nonholonomic) constraints and limited control au-
thority make the generation of explicit control laws for precise motion control (trajectory
tracking, point to point locomotion) exceedingly difficult. This leaves us with imprecise
behaviors which need to be altered to meet the desired requirements.

We argue that motion control under such situations is reduced to generating strings of
accepted symbols which can be pieced together prior to initiation of motion and then
altered “on-the-fly” based on real-time input from sensors. An important factor for a
motion control strategy of this nature is a hybrid architecture that serves as an abstraction
between continuous and discrete (symbolic) control. In addition it is important that
this framework integrate real time sensor information into primitive behaviors in such
a way as to incorporate intelligent switching between behaviors, to facilitate planning
and learning. Inputs to such a hybrid control system are symbol strings and continuous
and discrete inputs from sensors. Outputs are continuous signals to actuators. The
input strings can be thought as being a part of a structured language [Brockett, 1990;
Manikonda et al., 1995b], which is rich enough to encode sensor information and the
model (essentially differential equations), and at the same time provide a set of rules for
concatenation, switching etc.

Earlier work that discusses some of these aspects of motion control as applied to robotics
can be found in [Brooks, 1986; Arbib, 1992; Arkin, 1992]. Brooks [Brooks, 1986] uses
task-achieving behaviors as the primary level of task decomposition. He introduces the
concept of a subsumption architecture which is essentially a structured and layered set



of behaviors with increasing levels of competence. These “reactive” systems typically
exploit domain constraints, using clever algorithms to allow fast processing of complex
sensor information (cf. [Horswill, 1993]). Arbib and Arkin (c.f. [Arbib, 1992; Arkin, 1992
and references therein) have applied schema theory to the robotics domain. However as
discussed in [Arbib, 1992] there is no consensus view as to what constitutes schema
theory.

Although these approaches have significant advantages from the point of view of architec-
tural design and programming flexibility, they have resisted mathematical formalization!
and are not amenable to tests for optimality. Comparing two sets of behaviors, even
within the same task, is complex and the domain-dependent nature of the solutions can
cause these systems to be basically incommensurate — one may fail some times, one may
fail at other times and comparison is difficult.

On the other hand, control theoretic approaches to motion control have traditionally
required detailed mathematical models of the system, its environment and state, to de-
sign control laws/algorithms to steer the system. In addition mobile robots are often
approximated as points or disks and dynamic models assume perfect sensors and state
information, making implementation of these algorithms in the real world difficult. In
practice, however, autonomous systems have little a priori information about their envi-
ronment, have limited range sensors and, in addition, dynamics can get complicated (see
the discussion on nonholonomic robots in section 4) making the design of explicit control
laws to steer the system along a desired trajectory increasingly difficult.

The inability to integrate robot model dynamics with real time sensor information stems
from the lack of a powerful enough framework to integrate the two approaches (control
theoretic vs behavior-based). This paper is a step in the direction of providing such a
framework, integrating features of reactive planning with modern control-theory-based
approaches to motion planning. First we introduce a motion description language, MDLe,
that provides a formal basis for robot programming using behaviors, and at the same
time permits incorporation of kinematic models of robots given in the form of differential
equations. The structure of the language MDLe (based on Brockett’s MDL[Brockett,
1990]) allows descriptions of triggers (generated by sensors) in the language. Feedback
and feedforward control laws are selected and executed by the triggering events. Secondly
we present a hierarchical and distributed hybrid architecture for generation and execution
of behaviors and planning algorithms developed under the formalism of MDLe.

While MDLe and the hybrid architecture provide a formalism to capture and express be-
havioral and control-theoretic aspects of a large class of systems, including some biological
aspects, we find that MDLe is particularly well suited to the demands of nonholonomic
path planning with limited range sensors. As an example of the strength of this language,
we show that it can be used to support a reactive planner for nonholonomic motion plan-
ning in the presence of obstacles, using limited range sensors for obstacle detection. Some
background on nonholonomic constraints and a discussion on earlier approaches to path

1However see [Lyons and Arbib, 1989] Robot Schema Language (RS)



planning with nonholonomic robots are also presented.

2 MDLe: A Language for Motion Control

We treat an autonomous robot as a kinetic state machine (following Brockett [Brockett,
1990]) which can be thought of as a continuous analog of a finite automaton. In the
framework of MDLe these kinetic state machines are governed by differential equations
of the form

&= f(z) + f:lgz-(x)ui; y=hx) e R? - 1)

where
z(-) : Rt =[0,00) - R"

Uj : ]R,+ xR? — R
Further each g; is a vector field in IR".
We now define the atoms of the motion language, denoted by o, as triples of the form
o; = (U, &% T*) where

Ui = (ug, " um)’

where each u; is as defined earlier

g: R — {0,1}
s(t) — &(s(®)

is a boolean function, 7% € R* and s(-) : [0,7] — R* is a k dimensional signal that
represents the output of the &k sensors. £ can be interpreted as an interrupt or trigger to
the system which is activated in a case of emergency or change in the environment, e.g.
the robot gets too close to an obstacle.

Let us denote by 7%, (measured with respect to the initiation of the atom) the time at
which an interrupt was received i.e. £* changes state from 1 to 0. 2

2The definition of an atom here can be compared with that in MDL where Brockett treats time-outs
in T, instead of giving explicit status to triggers.



If the kinetic state machine receives an input string oy -+ - 0 = (U1, &7, T¢) - - - (U, £, T)
then the state z will evolve according to

i (@) + G(2)Uy, to <t< to+min[T? TO.

: ) 2
i = f@)+C@Un tot- -+ minfTey T ] )
<t< to+ -+ min[Te, T

n’> n

where G = (g1(z), - - gm(x)).

Hence each atom in the input string is executed in sequential order, execution of a
particular atom being inhibited either via interrupts or a “time out” via the timer 7.

We denote a kinetic state machine as a six-tuple (U, X, ), S, h, &), where

U= C®(R* x R?”;R™) is an input (control) space,
X = R" is the state space,

Y = R? is an output space,

S C R* is the sensor signal space,

h: X — Y maps the state space to the output space
and

£:8 — {0,1} is an interrupt.

As another point of departure from MDL, we find it useful to bring input scaling into
the picture. This provides considerable flexibility as will be seen in later sections.

Definition: Given an atom, (U, &%, T%), define (aU, &% 6T9), a = (o, --,a™) € R™,
B € R" as the corresponding scaled atom and denote it as («, 8)(U, &%, T*).

Hence « scaling is used to scale each input and f scaling is used to scale the time for
which an atom is to be executed.

Definition: An alphabet ¥ is a finite set of independent atoms, i.e (U, &% T°) triples.
Thus £ = {o1,--+,0,} for some finite n where o; denotes the triple (U;, &8, T}), such
that o; # (o, 8)(0j), a€e R™, e RT andi=1,--'n, j=1---n.

Hence an alphabet is a set of atoms none of which can be derived from other atoms in
the alphabet via scaling.

To simplify notation in the rest of the discussion we denote the scaled atom (1,1)o;
simply by o;.

Definition: An extended alphabet . is the infinite set of scaled atoms, i.e. triples
(03U, €8, B;T7) derived from the alphabet Z.

Definition: A language ©* (respectively 3%) is defined as the set of all strings over the
fixed alphabet & (respectively extended alphabet 3.).
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Definition: A behavior, denoted by 7 is an element (i.e. word) of the extended language
3*, with an associated timer 7° and interrupt £°. For example, given an alphabet ¥ =
{01, 02}, a behavior 7; could be m; = ((cv,, B8:,) 04, (Ciy, Biy) 04y (s, Big)oiy ), TP, £°).

The notation o;, is used to denote the jth atom in the ¢th behavior. Similarly o; , §;;
correspond to scaling factors of the jth atom in the ith behavior.

Often we will have to work with atomic behaviors (behaviors with a single atom) with
€ = £ and T® = T°. In such situation to simplify notation we will denote atomic
behaviors simply by 7; = ((,, 8i;)0:), dropping explicit reference to £° and 7°.

Interrupts associated with atoms (£2) are called level—0 interrupts. Interrupts associated
with behaviors (£°) are called level — 1 interrupts. If a level-0 interrupt is received while
an atom of a behavior is being executed, the execution of that particular atom is inhibited
and the next atom in that behavior is executed. If a level-1 interrupt is received while
a behavior is being executed, the execution of the entire behavior is inhibited and the
next behavior (if there exists one) is executed. The interrupts £ may be results of a
complicated processing of sensory information. In the simplest case however they may
involve thresholding of sensory information.

Since each atom, when executed by a kinetic state machine, combines in general both
open loop and feedback controls, one could argue that our definition of behavior captures
some aspects of the essence of locomotion behavior [Bernstein, 1967], as well as the sense
in which the term is used in [Brooks, 1986). Further the passage from atoms to behaviors
to plans suggests (as we shall see in section 3) a layered architecture. We also argue
that MDLe captures the salient features of various architectures/approaches to model
behaviors. Comparing it with the schema approach of [Arkin, 1988; 1992; Arbib, 1993;
1992}, one observes that an atom incorporates both “motor” (controls) and “perceptual”
(interrupt functions) schemas into one unit.

The introduction of the timer 7%(T®) servers two proposes. (i) It serves as the clock
for the evolution of the differential equations i.e. if an open loop control is an input to
the kinetic state machine then the timer interrupt can be used to turn off the control at
the desired time 7. (ii) It guarantees that no behavior will be executed forever. For
example if the desired behavior was - “move towards a wall” and either the sensors (used
to detect the wall) were defective, or the wall did not exist, then the timer guarantees
that the atom (behavior) is only executed for a maximum period of time 7%(7®). With
the introduction of scaling factors and a hierarchy of interrupts we provide for “directed
control” (the term as used in [Blumberg and Galyean, 1995] ), optimization and learning.
These aspects will be discussed later.

Before proceeding any further on the structure of the language we discuss an example
from Rana computatriz (also discussed in [Arbib, 1993; 1992]) to model the visuomotor
coordination in frogs and toads with the purpose of pointing out a biological motiva-
tion/application of MDLe. Applications to autonomous robots are discussed in detail in
later sections.



Example 1: It has been observed that frogs and toads approach small moving objects
(assuming they are prey) and move away from large ones (assuming that they might
be predators). It was hypothesized that the tectum (visual region in the animal’s mid
brain) was responsible for recognizing small objects and the pretectum processed visual
information and determined which objects were large. If one assumes a model in which the
prey seeking behavior is activated by an input from the tectum and the predator avoiding
behavior is triggered by a signal from the pretectum, then a lesion in the pretectum should
leave the frog or toad unresponsive towards large objects. However it was observed that
a frog with a lesioned pretectum approaches both large and small objects while not
exhibiting an avoidance behavior.

We model this in MDLe as follows - define two boolean functions Siectum, Spretectum : W —
{0, 1} that process visual information from the world (environment) W. We assume that
visual information is passed both to the tectum and the pretectum, where each evaluates
Stectum and Spretectum respectively. These boolean functions are defined a follows:

1 if object is small

Stectum = { 0 if object is large

0 if object is small

Spretectum = { 1 if object is large

Further lets assume that we have modeled the motion of the frog, and U,pproecr and
Usetreat are controls that result in a motion towards and away from the prey and predator
respectively. Let us define two atoms as follows:

01 = (Uspproach, E&, Tf)  where €8 = (Siectum V Spretectum)  — “APPROACH ATOM”
02 = (Uretreats €5, T5)  where €5 = Spretectum  — “RETREAT ATOM?”

Here “V” denotes the logical OR and “~” denotes the logical NOT. Define a behavior 7
as follows:

™= ((01 02)", ¢, T")

where (0109)* defines the infinite string 01050102 -0102---. The behavior interrupt
and timer are chosen to interrupt this behavior after some prescribed time 7% or via £°
in case of undesirable changes in the environment. To understand the working of the
above behavior assume that the moving object was small. Hence o; will be executed
(as & =1 : Stectum = 1 and Spretecwm = 1), for a period T} after which execution of oy
will begin. But since &2 is 0 (Spretectum returns a 0 for small objects), o, is not executed



and oy is executed again. This process will continue for a maximum period of T° unless
interrupted by £°. Now assume that the moving object was large. Again execution of oy
will fail (Siectum = 0, gp,etectum = 0 and hence & = 0) and only oy will be repeatedly
executed.

We observe that the behavior = models the response of a frog to moving objects. It also
fits with the observation that a frog with a lesioned pretectum will move towards both
small and large objects: Without loss of generality assume that a lesion in the pretectum
results in Spretectum = 0,Vt. Hence we observe that oy is always inhibited but o will
always be active for all moving objects. One observes that implicit in this model is that
the “approach” atom processes information from both the tectum and the pretectum.
(Compare with the schema model suggested by Arbib). 0

On a separate note one should observe that the sequential execution of atoms in a be-
havior does not preclude the fact that behaviors cannot be executed in parallel. It just
ensures that the same kinetic state machine (essentially the differential equations) does
not receive two sets of conflicting inputs at the same time. A large complex system (which
would obviously be difficult to model) could be modeled as several kinetic state machines
each one of them evolving in parallel and interacting through the behavior interrupts £°.

Definition: The length of a behavior denoted by || is the number of atoms (or scaled
atoms) in the behavior.

Definition: The duration T'(r) of a behavior

= (ainﬁil)(Uiu&uﬂJ e (aiu ﬂil)(Ui“ giptril)

executed beginning at time ¢, is the minimum of the sum of the time intervals for which
each of the atoms in the behavior was executed and the prescribed time for which the
behavior was expected to be executed. That is,

T(”Tz) = mzn[ (mln[f’f> IBing] +ee min[ﬁ‘:, ﬁi:ﬂi]) ’T;Zb] (3)

Definition: Given a kinetic state machine and a world-model, a plan T is defined as
an ordered sequence of behaviors which, when executed, achieves the given goal. For
example a plan I' = {m3mm, - - -} could be generated from a given language where each
behavior is executed in the order in which they appear in the plan. The length of a plan
I' is given by |T'| = &; |m;| and the duration of the plan is given by T(T') = ; T(m;). In
a particular context there may be more than one plan that achieves a given goal.

Example 2. Consider the problem of path planning for a robot unicycle, with a single
sensor, that wanders around in a given environment without colliding into obstacles
(analogous to the idea of the first level of competence in Brooks [Brooks, 1986] ). Let us
assume the task of the robot (unicycle) in this case is to wander till it senses an obstacle.
If it senses an obstacle it avoids the obstacle and continues to wander around. We now



formulate this problem treating the unicycle with its sensor as a kinetic state machine,
and find a plan that solves the problem. The differential equations governing the kinetic
state machine are

£ = wvjcosd (4-a)
= v siné (4-b
f = v, (4-c)

where (z,y) € R? denotes the position of the unicycle w.r.t some inertial frame, 6 denotes
the orientation of the unicycle relative to the horizontal axis and v; and vy, the velocity
of the unicycle and the angular velocity respectively are the inputs to the kinetic state
machine. With reference to the standard notation (1), we identify u, = vy, ug = vy,
g1 = (cosb,sinf,0)" and g, = (0,0,1)".

To generate the “wander behavior” (wander in a given environment without colliding
into obstacles) let us consider the following atoms:

oy = (Uy, &8, TY) where

Uy = (1,0)
e_J 1 ifp>10
&= 0 ifp<10
Tt € (0,00)

and where p is the distance between the robot and the obstacle that is returned by the
Sensor.

oy = (Us, €8, Ty) where

o3 = (Us, €8, T%) where

Us =(0,1)
& =
T¢ € (0,00)

Let o = (a!, a?) with each of € [k, k2], k1,k2,€ R and 8 € [0,00]. Now consider the
following atomic behaviors 3

= (alaﬂl)(Uly gfa 1)

3See remark on notation for atomic behavior immediatlely following the definition of behavior
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Ty = (g, B2) (U2, £3,1)
3 = (a3aﬂ3)(U3a€§7 1)

Based on the equations of this robot, the behavior 7; is interpreted as “move forward”
with a velocity of o units/sec for 3; seconds, and behaviors m, and 73 can be interpreted
as “turn” with a velocity of o} deg/sec for maximum of 8; seconds (here ¢ = 2, 3) unless
interrupted. As explained earlier the atoms of each behavior will only execute as long as
their respective £ functions are 1 and the time of execution is less than T. Since {3 =1
in the entire interval, [0, 83], once 73 begins executing it continues until ¢ = 3

e
1

w2 | RS . SR
2}
4 —u
- u2
-

Figure 1: Trajectory and Inputs Generated by the Plan I'

Consider the plan

Iy = {((ou, B)mi(e, Bo)ms))", €7, TP}

with a; = (5,0), 6y = 100, as = (0,—1), f2 = 90, £€» =1 and T? very large. Observe
that, if this plan is executed in the environment (with walls W1 and W2) as shown in
Fig. 1, the robot will move forward for time ¢, {, < ¢t < ty + 100, where ¢, is the time
at which the behavior was started, when &, will interrupt* it (too close to W1). Let us
assume that the interrupt was received at tg + T\l The execution of behavior m; is then
inhibited, behavior 3 is picked up from the queue and is executed. As & = 1 in the
entire interval ¢ € [ty + Tl, to + T1 + 90) the robot will then turn clockwise by 90 degrees
and then it will again execute 7 i.e. move forward. But again after some finite time
wall W2 (see Fig. 1) will cause & = 0 and hence interrupt the move forward behavior.
Behavior 73 is executed as earlier i.e. the robot turns clockwise by 90 degrees, and now
continues to move forward. If it does not detect an obstacle at the end of 100 seconds
since it began moving forward, it will stop, turn clockwise 90 degrees, and continue to
repeat the sequence of actions.

Now consider the plan Iy = {((cu, f1)m (e, B2)m2)*, &P, TP} with ay = (50,0), B =
2, ay = (0,—20) and B, = 5. Observe that, if this plan is executed in the same envi-
ronment (see Fig. 2), then while executing “move forward” i.e. =y, in the time interval

4We drop the superscript on £ and T

10



to <t < to+2 the robot realizes that the obstacle is at a distance less than 10 units from
it and hence &; interrupts “move forward ” and the robot begins to execute “turn right”.
Due to the choice of the interrupt function & the robot will now switch between “turn
right” and “move forward” (a condition referred to as chattering) and trace a trajectory
as shown in the figure. Hence depending on the choice of the alphabet one can generate
different plans to achieve the same task. O

Wt

o Rt

Figure 2: Trajectory and Inputs Generated by the Plan I'y

)
|
s

The question of how to generate a plan given an alphabet and a kinetic state machine,
is an open one and it largely depends on the task and the planner. In section 4 we
describe a path planner for nonholonomic robots in which we attempt to answer related
questions regarding existence and choice of alphabets. Before we discuss the features of
the planner we introduce some more definitions that help formalize measures to evaluate
the performance of a plan.

2.1 Performance Measure of a Plan

At first it appears that generating a plan to steer a system from a given initial state zy to
a final state z; requires complete a priori information of the world, which is not available
in many instances of path planning. In the absence of such complete a prior: information
about the world W, the planning system has to generate a sequence of plans based on the
limited information about W that it has. Each such plan will only achieve an intermediate
goal. Concatenation of these plans will achieve the desired goal. In MDLe each of these
plans is called a partialplan and is denoted by I'? = (ni,...xi &0, T7), where £ is an
interrupt, which when set to 0, inhibits the execution of the partial plan and 77 is the
prescribed time for which the partial plan is to be executed. Here the notation 7r§ is used
to denote the jth behavior in the sth partial plan. Interrupts associated with partial
plans are referred to as level-2 interrupts.

Remark: As a partial plan is generated with limited information of the world, not all
the behaviors and not every atom in a behavior generated by the partial plan may be
executed at run time for the following reasons:

(i) Let us consider a behavior m; = (030104 - 04,&F, TP). Let us assume that the atom
o3 is interrupted by &5 at Ty'. Now as explained earlier o; will begin to execute. But if
&8 = &7, o1 will not be executed and again depending on &, o4 will begin to execute.

11



(ii) While executing an atom in a particular behavior, a level-1 or a level-2 interrupt
might be received, and hence the remainder of the atoms in that particular behavior will
not get executed. a

Given an algorithm that generates a plan I' we define a candidate measure of performance
O(T") of the plan as

o) =T(I') +7|T (5)

where 7 is a normalizing factor having the units of time. (One need not limit oneself to
such additive combinations although this is the only case used here.)

Defining a performance measure for a path planner is a difficult task as it is largely
dependent on the goal the robot seeks to achieve. Some path planners use the total
time to achieve the goal as a measure of performance. In many situations one might
be interested in not only the time but also on the smoothness of the path traversed or
the number of times switching between different controls was necessary. For example
consider the task of parallel parking of a car. One might be able to achieve the goal
by using only open-loop controls but switching between them at regular intervals, hence
possibly reducing the time to achieve the goal but compromising on the smoothness of the
path. On the other hand if one uses a time dependent feedback law, the same task could
be achieved, possibly by moving along a smooth trajectory at the risk of taking longer
time to achieve the goal. This indicates a trade-off between two competing requirements
which is captured by the performance measure (5).

We now define the optimal performance of a plan as
O(T) optimar = min{T(T') + 7|T|}. (6)

Here the minimization is performed over the subset of plans generated by the subset B
of admissible behaviors. Depending on the kinetic state machine and the choice of the
planner one can now place bounds on the optimal performance and hence compare the
performance of different planners given the same language or that of the planner given a
new language. This is illustrated in the example given below.

Example 3: Consider the problem of steering the unicycle from a given initial location
2, to zy. The equations of the unicycle are given in example 2. Let us assume that
the language is based on the following atoms. oy = (Uy,£$,1), o2 = (Us,&5,1) where
Uy, £8,Us, £2 are as defined in example 1. Let a = (!, o?) with each of € [-5,+5] and
B € (0,00).

Let us also assume that the planner did not have complete information about the world
and had to generate n partial plans to achieve the goal. Each partial plan consists of
steering the unicycle from z; to z; (see Fig 3) such that there are no obstacles in some
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small neighborhood of the line segment joining these two locations. Let us make a further
assumption that the planner uses o € {1,—1} as the scaling factor while generating
partial plans.

Figure 3: Partial Plan Generation

From the kinematic equations of the unicycle we know that a simple partial plan to steer
a unicycle from z; = (z;, y;, 6;) to z, = (z;,y;,0;) would be :

(i) turn by (6,s, — 60,
(ii) move by a distance d; and
(iii) finally turn by (6; — 6..,;),

where z;z; is the vector in R? joining (z;,4:) and (z;,v;), di = ||zi%;]], and 0.,z; is the
orientation of the vector w.r.t. to the x-axis.

We can rewrite this simple algorithm as a pariial plan derived from the language using
the atomic behaviors my = oy, and m = o9,

I?; = {((8:1/10a1l, |611]) o2 (1, di)or (Bia/|Bizl, |0:2))02), €7, TP}

where 8;; and 8;; are the angles of the two turns as described above of the ith partial
plan. Hence the plan to steer the system from z, to zy is given by

I = {[?,[?,---T?,}.

Given a plan we now illustrate how bounds can be placed on the optimal performance
based on the knowledge of the kinetic state machine and the language. Let dy. =
maz ||z2;]|-

Tmaa: (Fpi) S 2 + dmaz + 2w S 4m + dmaz
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and |T'?;| < 3. Hence,

max

0< O <3n+ndr + dnaz)-

However, as we are using only open-loop controls, we know from the kinematics of the
system that given an initial state z, and a final state z; both the behaviors (o, 8;)0;
and (koy, Bi/k)o; would steer the kinetic state machine from the initial state to the final
state. Hence we could replace (s, §;)o; by (kay, Bi/k)o:.

Observe that in the generation of the above partial plan and in the calculation of the
performance measure we restricted o to {—1,1} (in some sense placed bounds on the
speed of the unicycle) because the planner did not have complete information about the
world. But since the language permits o* € [—5, 5], we have

n(47 + dmaz)

0 S @(F)Optimal S 5

+ 3n.

Having placed bounds on a plan generated by one set of behaviors we can now compare
the performance of another set of behaviors (for example, one using periodic functions
to steer the robot) against these bounds. i

In the above examples we have used very simple controls in our alphabet. But one should
note that depending on the application, a wide variety of controls (open loop and closed
loop) could be included in the alphabet and some examples of such controls can be found
in [Murray and Sastry, 1990; Sussmann, 1991; de Wit and Sordalen, 1992; Coron, 1992;
Pomet, 1992; Leonard and Krishnaprasad, 1993]

3 Hybrid Architecture

As we seek to attain higher levels of autonomy in robots, the need for hierarchical and
distributed control schemes becomes apparent. Motivated in part by the hierarchical
structure of neuromuscular control systems [Bernstein, 1967] we present a control archi-
tecture (see Fig. 4), to generate and execute plans to achieve a given task. The lowest
level is the kinetic state machine where the sensors are used in a low-level feedback
loop. Kinetic state machines serve as abstractions between discrete (atoms) inputs and
continuous time control. The working of the kinetic state machine (see Fig 5) is as fol-
lows - let us assume that an atom (U;, &}, T?) is executed at time ¢ = ¢;. T is a timer
whose output is 1 (active high) while tg < ¢t < T; and is 0 (active low) if t > ¢y + T5.
&:(s(t)) returns an interrupt (active low) to the system when conditions defined by either
£2(s(t)), £2(s(t) or £P(s(t) are satisfied. Observe here that the interrupt could be of level
2,1, or 0.The functioning of the AND gates in the kinetic state machine can be inter-
preted as follows - if either the KSM receives an interrupt or ¢ > to+T; (either T2, T, TF)

14
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Figure 4: Hybrid Control Architecture

the input to gate II is an active low and hence the input to the kinetic state machine is
inhibited i.e. the current atom/behavior/partial plan (depending on the interrupt level)
is stopped and the next atom/behavior/partial plan in the respective queue is executed.

The planner is the highest end of the architecture where sensory information is processed
to generate goal-related trajectory information. It uses information from its memory and
the “behavior bank” to generate a partial plan to achieve the desired goal based on
its current information about the world. This partial plan is in the form of actions
or symbols. The motor system serves as an abstraction between these symbols and
behaviors encoded in MDLe. Once the behaviors have been encoded, atoms in a behavior
are executed as explained above. In case of sequential dependence of a set of kinetic state
machines on one another, the motor system introduces “dummy atoms” (atoms with zero
control input) into the respective behaviors. The interrupt functions of these behaviors
are activated by one another.
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External control or “directed control” [Blumberg and Galyean, 1995] is permitted at two
levels. The user can inhibit the input from the planner and introduce a valid behavior
from the existing behavior bank, or inhibit the execution of a current behavior via the
“control interrupt vector” (CIV). The control interrupt vector is an interrupt function
b, appended to every behavior, i.e.. £ = (&) esired N Eop- In its default state the CIV
for the particular behavior is at a logical one, but can be set to zero by the user when it
is desired to inhibit the execution of a particular behavior.

As explained earlier, often the planner generates plans based on local sensor information.
This information may be incorrect and might result in some of the atoms in a behavior
not being executed or executed for a time less that the estimated one. If a behavior
successfully completes it tasks receiving only zero level interrupts, then this behavior in
its “cleaned up” version (removing unnecessary atoms, and scaling T appropriately) is
loaded into the behavior bank. Alternately a partial plan could successfully execute with
interrupts of level zero or level 1. Then such a successful partial plan (in its cleaned up
state), which is essential a concatenation of behaviors, is introduced into the behavior
bank. Hence we see that existing atoms and behaviors can give rise to new emergent
behaviors.

The layered and distributed nature of the control becomes apparent when one observes
that once a plan has been generated, each level and even various modules at the same
level continue to execute independently.
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4 Application of MDLe to path planning with non-
holonomic robots

The problems of obstacle avoidance and path planning with autonomous mobile robots
have been studied in various settings. [Lumelsky, 1987; Lozano-Perez, 1980; Khatib, 1986;
Koditschek, 1987; Shahidi et al., 1991]. These approaches either assumed that the planner
had to have substantive a priori information about the location, shapes and sizes of
obstacles, or assumed that the constraints on the robot (geometric and kinematic) were
holonomic or integrable. In practice, however, most real world robotic systems have little
a priori information about the shapes and size of the obstacles and in addition include
kinematic constraints that are nonholonomic. A few examples of nonholonomic systems
are a front wheel drive car, dextrous manipulation or assembly with robotic hands and
attitude control of a satellite. As traditional path planners assume arbitrary motion they
cannot be applied to nonholonomic robots as they result in nonfeasible trajectories i.e.
trajectories that do not satisfy the constraints on the configuration variables.

More recently, researchers have been examining nonholonomic path planning in the pres-
ence of obstacles [Laumond, 1990; Barraquand and Latombe, 1989; Mirtich and Canny,
1992; Hu and Brady, 1995]. However, while most of these planners provide some excel-
lent results they are quite rigid in the choice of control laws used to steer the robots and
often do not exploit the control laws available in control literature, for example [Murray
and Sastry, 1990; Sussmann, 1991; Coron, 1992; de Wit and Sordalen, 1992]. They also
assume near complete a prior: information about the world and only account for small
changes in the environment.

MDLe is particularly well suited to the demands of nonholonomic motion-planning with
limited range sensors. As nonholonomic robot models impose limitations on stabilizabil-
ity via smooth feedback [Brockett, 1983], the ability to piece together open-loop and
closed-loop trajectories becomes essential. MDLe enables one to describe such piecing
together in a systematic manner. As an example of the strength of this language, we
show that it can be used to support a reactive planner for nonholonomic motion plan-
ning in the presence of obstacles, using limited range sensors for obstacles detection. In
addition, the system assumes no a priori information on the location and shapes of the
obstacles.

In the following section we reinterpret existing results in literature on nonholonomic
robots, and answer questions related to the existence and choice of an alphabet ¥ (re-
spectively X.) which can be used to generate behaviors and hence plans to achieve a
required goal. We also describe (section 5.2) how we can update world models and pro-
vide examples of the system’s performance. For further details on nonholonomic motion
planning we refer the reader to [Fernandes et al., 1993] and references therein.

17



4.1 Nonholonomic Constraints

In addition to being subject to geometric constraints many robotic systems are subject
to velocity constraints. These velocity constraints are represented by relations between
generalized coordinates and their velocities, and are written in matrix form as

A(g)g=0 (7)

where ¢ € R"™ determines the generalized coordinates, ¢ are the generalized velocities
and A(q) € RF*™ represents a set of k velocity constraints. We also assume that A(q)
has full row rank. Since a kinematic constraint restricts the allowable velocities and not
necessarily the configuration, it is not always possible to represent it as an algebraic
constraint on the configuration space. A kinematic constraint is said to be mtegrable if
there exists a vector valued function h : @ — IR¥ such that

Alg)g=0 = —-¢=0 (8)

An integrable kinematic constraint is hence equivalent to a holonomic constraint.

Kinematic constraints that are not integrable are said to be nonholonomic. The con-
straint (1) defines a (2n — k) dimensional smooth manifold M = {(q, ¢)|A(¢)¢ = 0}.
These kinematic constraints generate a set of constraint forces so as to ensure that the
system does not move in the direction of the rows of the constraint matrix (see fig 6). In
mechanical systems such constraints are often those of rolling without slipping, conser-
vation of angular momentum etc.

If the controls u(t) € R™ satisfy n — k < m < n then the kinematics are sufficient to
model the system and (7) can be written in the form of a drift free control system

= i b (x)us; (9)

=1

with state z(t) and control u(t), and each b; is a vector field. Often such drift free
nonholonomic systems are controllable (cf.[Murray et al., 1994]).

Proposition 1 Given an obstacle-free environment and a kinetic state machine that is
governed by the differential equation

=Y b(z)u; z € R",ueR™ (10)

i=1

such that the control Lie algebra (i.e. the vector space spanned at any point by all the Lie
brackets of the vector fields b;) has rank n, then there exists an alphabet ¥ (respectively
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Figure 6: Nonfeasible trajectories due to nonholonomic constraints

¥e) which can be used to generate behaviors (and hence plans) to steer the system from
a given initial state z, to a final state z;. :

Proof: From Chow’s [Hermann, 1968] theorem we know that if the control Lie Algebra
has rank n then the system is controllable. This implies there exist piecewise constant
controls w : [0,T] = R™,T > 0 that steer the system from any initial state z,(0) to any
final state z;(T').

A simple alphabet that can be used to generate behaviors consists of m triples of the
form (Uy,1,1), -+, (Um,1,1) @ € R, 3 € R" where

While writing down the equations of motion it is sufficient to consider the evolution of
the state z € C (the configuration space of the robot). For path planning and obstacle
avoidance one needs to be conceined with the “material points of the robot”, location
and calibration of sensors. In our planner we identify the material points of the robot
with a closed subset, denoted by B", of R®. Hence B" : C — F :  + B"(z), where F
is the space of all closed connected subsets of R?. Further we define B} : C — F such
that at any given time ¢t = ¢’ (1) B"(z(¢')) C Bg(z(t')) and (ii) d(0B,0B") = k, where

d(X,Y) = eI)Ic'liney l(z,y)|| and 8B" denotes the boundary of the set B". Lets assume
TEX, y

that the robot is equipped with limited range sensors that can detect an obstacle in a
Bj neighborhood. of z. Define an interrupt .. as follows.

0 VzeBl, e<p

é.nc(w) = { 1 Vz € B;\Bg (11)

Proposition 2 : Give a kinetic state machine governed by the differential equation (10)
then any behavior with an interrupt of the form

ff:g?/\fnc
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where & is as defined by (11) will result in a collision free path.

Since the robot is equipped with limited range sensors in our planner the task of path
planning is reduced to steering in obstacle free neighborhoods denoted by B;. Using a
potential function approach (see section 5.1 for details) a point z; € 8B, is identified
to which the planner steers the robot. As the size of By, decreases due to nonholonomic
constraints finding a control s.t. z(t) € Bj, cannot always be guaranteed. But for a
certain class of robots that are locally locally controllable (LLC)® we can guarantee this.

Proposition 3 If the system defend by (11) 1s LLC then there ezists a behavior (-, £%,T?)
such that z(t) € By, Vt € [0,T7].

Observe that by a choice of € as defined in (11) non-collision is guaranteed even if
material points of the robot leave By,.

5 PNMR: Path Planner for Nonholonomic Mobile
robots

The task of the planner is to use the limited-range sensor information, to generate partial
plans that result in collision-free feasible trajectories. Planning is done at two levels -
global and local. For local planning, collision-free (non)feasible paths are generated
using potential functions assuming that the robot is holonomic. A partial plan (feasible
path) is then generated that obeys the constraints in the configuration variables. As
feasible trajectories are only approximations to the trajectories generated using potential
functions, collision with obstacles could occur while tracing them. While the robot is
in motion, collisions are avoided by using the sensor information to trigger interrupts as
described previously. The task of the path planning is outlined as follows (see Fig 7):

1. Interpret local sensor information to generate a “control point” and an obstacle free
neighborhood containing this “control point” to which the robot is to be steered.

2. From the given alphabet select atoms (U, &, T') that could be used to steer the robot
(in general, depending on the richness of the alphabet (¥), there could be more
than one behavior to steer the robot to the control point).

3. Calculate the scaling factor o (crucial, as it determines the speed of the robot).
Having calculated «, calculate or approximate 3, the duration for which each atom
is to be executed.

5The system (9) is said to be locally locally controllable at o if given any € > 0 there exists a 6>0
such that all points in the d-neighborhood of zo can be linked by a trajectory of (9) which does not leave
the e-neighborhood
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Figure 7: Navigation Task Decomposition

4. Generate an optimal partial plan, by minimizing the performance measure (6). The
minimization is performed over the admissible behaviors.

5. Execute the partial plan and update runtime information regarding actual time of
execution of behaviors in the partial plan, sensor information etc.

6. Given an updatedh world and partial plans generate an optimal plan.

At a global level heuristics, along with the world map generated while the robot is
en route to the goal, are used to solve the problem of cycles. One should note here that
the planner could be used with most nonholonomic robots, by selecting the corresponding
alphabet and associating rules with the selection of atoms. In our simulations we have
assumed that the robot is modeled along the lines of a unicycle. See [Manikonda et al.,
1995a) for details on the implementation of the planner.

5.1 Planning in the Obstacle Free Disk

To find the best direction of travel in the obstacle free disk we use the approach of
potential functions. As in the earlier work on path planning with potential functions, the
idea behind our construction is based on electrostatic field theory - charges of the same
sign repel and charges of the opposite sign attract in accordance with Coulomb’s law.
Hence we assign a positive charge distribution to the obstacles and the mobile robot and
a negative charge distribution to the goal. The idea is to construct a vector field which
will give the best direction of travel based on the location of the obstacles and the goal.

The robot is approximated to a point robot and as sensors can detect only points on the
boundaries of the obstacles that lie in their line of vision, we treat obstacles as a collection
of point charges and assign charges to them depending on which sensor detects them.
The intersection of the resultant gradient field with the circumference of the obstacle free
disks gives the desired location to which robot is to be steered. (One should observe here
that unlike earlier approaches the gradient field is not directly used to steer the robot.
As integral curves of the resultant gradient field may not result in feasible trajectories
we use the resultant gradient field only to determine the scaling factors and z; on the
circumference of the obstacle free disk.)

Once the initial and desired final state of the robot is known control inputs are chosen
from those available in the language to generate feasible trajectories to steer the robot
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from the initial location to the final desired location. If more than one such control
achieves the task then the performance measure can be used to select the optimum one.

As we are using a kinematic model, of the robot an underlying assumption is that the
robot is moving at low velocities and we can bring the robot to a halt simply by turning
off the controls. To determine scaling factors, which are directly related to the velocities
of the inputs to the equations governing the motion of the robot, we use the sum total
of both the attractive and repulsive forces to determine the bounds on the velocities and
hence the bounds on the scaling factors. A simple example of such a function is given by

v aTr lf _1———— > 'Uma
9(fa fr) = { " KTl +T7 1) z

_ 1 i
RIAED 0 S mzgesn S Umes

where f, and f, are the net attractive and repulsive forces acting on the robot. Observe
that when the robot is close to either the obstacle, the goal or both, it moves with a
lower velocity hence making the kinematic model more realistic.

By intelligently choosing weights on the charges (see [Manikonda, 1994] for more details)
we can ensure that the robot either avoids the obstacle or gets close enough to an obstacle
% such that Bj;, < Br, in which case it traces the boundaries of obstacles to a point
where it finds an edge or is heading in the direction of the goal.

Remark: It is important to mention here that as we are making no assumptions on
the location sizes or shapes of the obstacles guaranteeing the existence of a path is very
difficult, though empirical results have shown that if a path exists the robot has more
often than not found it. More importance here is stressed on the ability of the planner
to integrate real time sensor information with control-theory-based approaches to steer
nonholonomic systems in a systematic way. As mentioned earlier, nonholonomic robots
impese limitations on stabilizability via smooth feedback and the planner developed
under the framework of the language provides an elegant way of piecing together various
control strategies.

Tracing Boundaries Planning in B[, is a closed loop planning strategy which essen-
tially results in a trace behavior that traces the boundaries of the obstacles. Given the
limited sensor and world information it is probable that the direction of trace may have
been wrong. Hence we use a heuristic function f(z) = D(X;obot, Xinit), the Euclidean
distance between X,qpo: and X;n;: (the point at which the trace behavior was started)
as an estimate of how far the robot has strayed from the goal. The robot traces the
boundary as long as f < f, where f; is some permitted distance from where the trace
behavior was started. If f > f; then we retrace path and trace the boundary of the
obstacle in the opposite direction. If terminal conditions for the trace are not met, we

set fs = afs, @ > 1, and repeat.

5In the implementation of the planner we identify a critical radius in which the robot changes its
control strategy
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Remark: Retracing a path under this framework is a rather simple task. Observing that
the system is a drift free system, retracing involves executing the past n partial plans in
a reverse order with (—a) scaling factor.

Fig. 8 shows some paths generated by the planner for a robot modeled along the lines of
a unicycle.” It is important to note that while the plan is being executed the sensors are
being continuously scanned and are present in a low level feedback loop hence preventing
any collisions with obstacles.

Obstacles

Q Obstacle free disks

Figure 8: Paths Generated by the Planner

It should be pointed out here that the obstacle-free disks generated by the planner violate the exact
definition given above, but this is because in the simulator we have used only sensors in the “front” of
the robot to generate obstacle-free disks. For now, those obstacles that are not detected by the sensors
are treated as being in the blind spots of the robot.
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5.2 World Model Update

Once the robot has explored the environment using limited range sensors, it is natural to
expect the robot to generate plans of a better performance if it has to repeat the same
task or move to goal that lie in the explore regions. We use a “learning algorithm” that
improves the performance of a plan to bring it closer to optimal.

As described above, the plan to steer a robot consists of a sequence of partial plans,
where each partial plan steers the robot in some obstacle free disk of radius Bj;. In
the rest of this section let us denote each of the obstacle free disks which were used to
generate the ith partial plan as B; and the ith partial plan as I'!. Further let us assume
that n such partial plans were generated. Once the plan has been generated the planner
uses following:

(i). ¥ B, Cc Bj, t=1,---n,j =1,---n (i.e. B;is contained in B;) then obviously B;
contains redundant information. Thus if B; C Bjy the partial plan ', that steers the
robot from C; to C;,, where C; is the center of the obstacle free disk, and partial plan
I?,, that steers the robot form C;i.; to Ciy, can be replaced by a partial plan T? that
steers the robot from C; to Ci.. Since B; C Bjy, it is obvious that ©(T?) < ©(I?T%,,)

(ii). Observe that since C;,1 lies on the boundary of C;, we are guaranteed the existence of
a trivial nonfeasible trajectory (the straight line joining C; with C;;5) that lies entirely in
B; U B;4 i.e. the obstacle free area enclosed by these two intersecting obstacle free disks.
Hence if there exists a partial plan f‘f that generates a feasible trajectory that can track
this nonfeasible trajectory and lie entirely in B;|J B;;1 such that ©(I%7) < ©(I?T%,,)

we can replace I[%T%, | by I?

(iii) After the execution of (i) and (ii) we now have partial plans that steer the robot
from C; to Citj, j € {2,---n} such that the trajectory lies entirely in U B;. The
planner now explores the possibility of finding (non)feasible trajectories from C; to
CitjtksJ € 2,---m,k = 1,---,n such that these trajectories lie entirely in Uititkp,
and the performance of the plan that generates this trajectory is better than the earlier
one.

Fig. 9 shows paths generated by the planner after it has gained partial knowledge of the
world it has explored in its first attempt to reach the goal. The bold solid lines denote
the new trajectories (partial plans) generated after partial knowledge of the world has
been gained. It clearly shows an improvement in the performance of the planner as the
length of the plan is nearly a third of the plan generated in the first attempt.

Remarks: (i). One should note that generating plans of better performance does not
necessarily imply that |T}| < |T'}| where I} is the new plan, but rather could simply
imply the choice of better scaling factors o, § such that 7'(I%) < T'(T%).

(ii). One need not restrict the generation on nonfeasible trajectories to straight line
segments, but could instead use arc or even curves that best fit the centers of these
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obstacle free disks.

6 Conclusions

This paper is an attempt to bring together aspects of motion control as discussed by
researchers in the communities of Behavioral Sciences, Artificial Intelligence and Control
theory. We provide a language, a framework and a hybrid architecture to integrate fea-
tures of reactive planning methods with control-theoretic approaches to motion control.
The hybrid language permits planning using a set of behaviors but at the same time the
incorporation of differential equations in the language makes it possible to formalize, com-
pare and generate behaviors that improve over time, generate maps, etc. It is clear that
in a task such as motion-planning of systems with complex dynamics, under-actuated
controls and limited range sensors, it is helpful to be able to switch between behaviors
that rely on the direct coupling of sensory information and actuators and steering us-
ing modern control-theory-based approaches. Our system shows that these two can be
smoothly integrated, at least for this form of nonholonomic robot path planning. Future
work includes extending the language to continue formalization of behaviors, including
multiple kinetic state machines in the language and implementation of the planner to
control a physical, as opposed to a simulated, robot.
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